DAWSON COLLEGE DEPARTMENT OF CHEMISTRY & CHEMICAL TECHNOLOGY

PRACTICE FINAL EXAMINATION

INTRODUCTION TO COLLEGE CHEMISTRY

Print your Name:	
Student Number:	
INSTRUCTORS:	Please circle the name of your instructor:
INSTRUCTIONS:	

1.

2. a)	Wri	te the names of	(5 marks)	
	i)	FeSO ₄		-
	ii)	KNO_2		-
	iii)	Ca(OH) ₂		-
	iv)	NiCO ₃		-
	v)	H_2SO_4		

b)	Write the chemical formulas for the following compounds:					(5 marks)	
	i)	ammonium	n nitrate			_	
	ii)	aluminum	oxide			_	
	iii)	copper (I)	sulfide			_	
	iv)	perchloric	acid			_	
	v)	cobalt (II)	bromide			_	
	vi)	nitric acid				_	
	vii)	disulfur de	cafluoride			_	
	viii)	silver chlor	ride			_	
	ix)	copper (II)	chloride dihydrate			_	
	x)	sodium cya	anide			_	
3. a)	Dete	ermine the o	xidation state (charge	e) of each atom in the	following comp	oounds:	(3 marks)
	i)	$KMnO_4$	K:	Mn:		0:	
	ii)	Na_2O_2	Na:	O:			
	iii)	$\operatorname{Cr_2O_7^{2-}}$	Cr:	O:			

4.

7.	V. Using check marks in the appropriate boxes classify each of the reaction	ns given below as:

(I) Oxidation-Reduction (Redox) (II) Acid-Base (III) Precipitation (Ppt.)

Note that for each reaction more than one choice may apply. (3 marks)

		I. Redox	II. Acid-Base	III. Ppt.
a)	\rightarrow			
b)	\rightarrow			
c)	\rightarrow			
d)	\rightarrow			
e)	\rightarrow			

8. Complete the table below by providing the symbol of each atom and putting a check mark ($\hat{\psi}\hat{\psi}\hat{\psi}$

b) The following are some physical and chemical properties of metals and nonmetals. Match the stated properties in column one with the type of element (metal or nonmetal) that can exhibit the given property. State your answer in column two

(6 marks)

Properties	Match
Have high melting point	
Have no lustre	
Mostly hard but malleable	
May combine with each other	
Have high electrical conductivity	
Most have high densities	
Will generally not be ductile but rather brittle	

9. Complete the following table by providing the missing information:

(9 marks)

Nuclear	Atomic	Mass	Number of	Number of	Number of
Symbol	Number	Number	Neutrons	Electrons	Protons
32 16		32		16	
			45		35
	12	24			
		7		3	

10	Answer true or false	for each of the following	questions below (circle	vour choice).	(5 marks
10.	I ms wer true or raise	IOI CUCII OI UIC IOIIOWIIIE	questions below (enercie	your choice.	(o man

a) In a chemical reaction matter can be created and destroyed.
 b) Neutrons and protons are subatomic particles found in the nucleus of an atom.

c) When atoms combine in a chemical reaction to form T F compounds they do so in simple whole number ratio.

d) Atoms of one element are usually similar to atoms T F

11. If 3.45 g bismuth metal, Bi, is reacted with chlorine gas according to the $\underline{\text{unbalanced}}$ chemical equation:

 \rightarrow

calculate the mass in grams of chlorine needed to completely react with the bismuth metal and the mass in grams of bismuth (III) chloride formed.

(4 marks)

12. When 2.50 g potassium superoxide, KO_2 , reacts with 4.50 g carbon dioxide according to the $\underline{unbalanced}$ chemical equation:

 \rightarrow

0.799 g oxygen gas are produced. Calculate:

- a) The theoretical yield of oxygen.
- b) The percent yield of oxygen in this reaction.

(5 marks)

13.	a)	Perform the following molar concentration calculations:					
		i) Calculate the molar concentration of 5.55 g	in 125 mL of solution.	(2 marks)			
		ii) Calculate the molar concentration of ammonium ammonium phosphate.	i ion in a 0.333 M solution of	(2 marks)			
	b)	Concentrated nitric acid is available as a 16 M solu	tion. What valume of concentrated				
	U)	nitric acid must be diluted with distilled water to pr		(2 marks			

14. a) Given that 24.0 mL of 0.170 M sodium iodide reacts with 0.209 M mercury (II) nitrate

15. a) A 5.00 L sample of krypton gas contains 1.51 x 10^{24} atoms at 25°C. What is the pressure of the krypton gas in units of atm?

(2 marks)