DAWSON COLLEGE MATHEMATICS DEPARTMENT

Final Examination

Mathematics 201-401-DW Statistics for Social Science (Section 01)

Instructor: Melanie Beck

Date: Tuesday, December 19, 2017 Time: 9:30 - 12:30

- 1. (6 marks) Find the probability that when two cards are drawn from a standard deck of 52 without replacement, the second card drawn is a heart. (You can use a tree diagram if you want to.)
- 2. *(3 marks)* The organizer of a contest must form a committee consisting of six persons. He has been suggested 5 names of artists, 3 of politicians and 6 of professors. How many di erent committees can be formed?
- 3. **(8 marks)**

7.	(6 marks) Let X be a continuous random variable that is normally distributed with a mean of 40 and a standard deviation of 4. Find the probability that X

- of 23.4. Do the data suggest that there is a difference in daily sales before and after the script change? Use = 0.05.
- 16. (7 marks) The makers of ink cartridges for color ink-jet printers have developed a new system for storing the ink. They think the new system will result in a longer lasting product. In order to determine whether this is the case, a test was developed in which a sample of 35 of the new cartridges was selected. They were put in a printer, and test pages were run until the cartridge was empty. The same thing was done for a sample of 32 { original cartridges. The following data were observed:

New cartridge	Existing cartridge				
$\mathbf{x}_1 = 288 \text{ pages}$					
$s_1 = 16:3 \text{ pages}$	s ₂ = 15:91 pages				

Based on the sample data and a signi cance level equal to 0.10, determine if the new system will result in a longer lasting product.

Answers.

- 1. The probability that the second card drawn is a heart is 1=4.
- 2. There are 3003 di erent committees that can be formed.
- 3. (a) P(A and B) = 0.22. (b) P(AjB) = 0.5. (c) P(A or B) = 0.94. (d) $P(A^c \text{ and } B^c) = 0.06$.
- 4. (a) Yes: all probabilities are between 0 and 1, and their sum is 1. (b) He can expect to sell 1.5 dishwashers during a day. (c) The standard deviation is 1.0149 dishwashers.
- 5. (a) The probability that exactly 5 of the 12 children live in homes with two married parents is 3.96%. (b) The probability that at most 2 of the 12 children live in homes with two married parents is 0.0374%. (c) The expected value is 8.16 children and the standard deviation is 1.616 children.
- 6. (a) P(1:1 < z < 0:72) = 0:1001.
- 7. (a) P(29 < X < 36) = 0.1557; (b) P(X < 40) = 0.5; (c) P(X > 32) = 0.9772; p = 8. (a) X is normally distributed with x = 40,000 and x = 70 x = 1500 = 10

Formulas

Counting
$$P_{n;r} = \frac{n!}{(n-r)!}$$

$$C_{n;r} = \frac{n!}{r!(n-r)!}$$

$$= S \times (x-r)^2 P(x) = S \times (x^2 P(x))^{-2}$$
 Random variable
$$E(X) = X \times P(x)$$

$$= (x-r)^2 P(x) = S \times (x^2 P(x))^{-2}$$

Binomial variable
$$P(x) = {n \choose x} p^x q^{n-x} = {n! \over x!(n-x)!} p^x q^{n-x} = np = {p \over npq}$$

Sample mean and standard deviation
$$x = \frac{P}{n}$$
 $s = \frac{S}{N} \frac{P}{x^2 + \frac{(P-x)^2}{n}}$

Z-scores: For parent population:
$$z = \frac{x}{x}$$
 $x = z + \frac{x}{x}$

For sampling distribution:
$$z = \frac{x}{z} = \frac{x}{n}$$

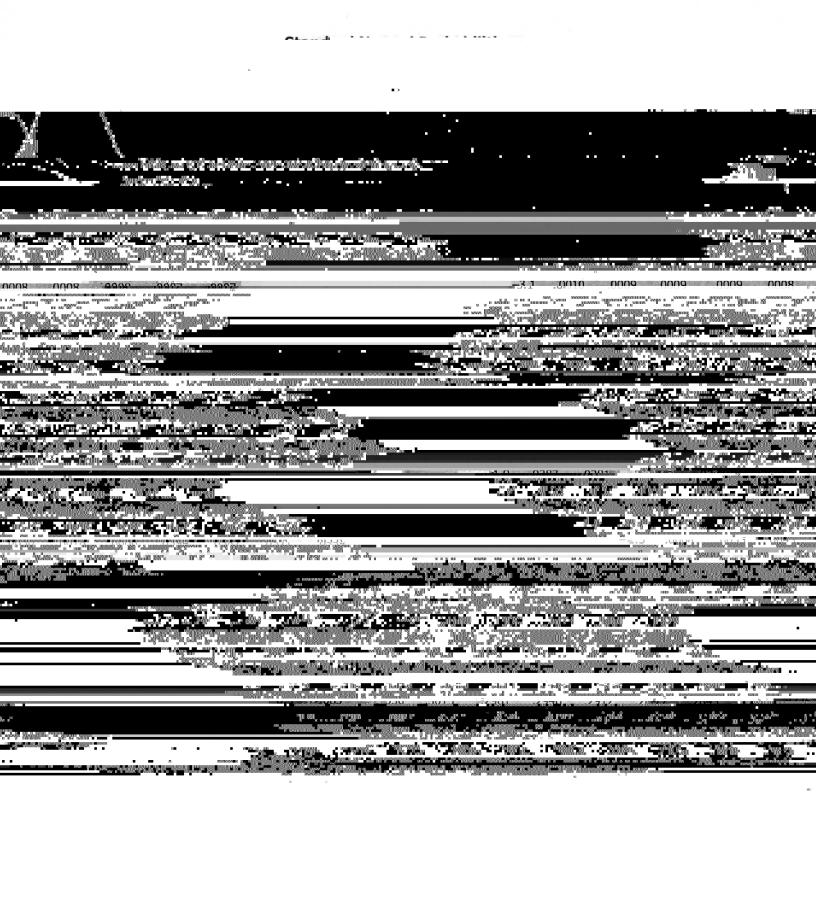
Statistics for one sample mean:
$$E = z_c p_{\overline{n}}$$
 $z = \frac{x}{=p_{\overline{n}}}$ $n \frac{z_c}{E}^2$

$$E = t_c \frac{s}{p - n}$$
 $t = \frac{x}{s = n}$ $n = \frac{t_c s}{E}^2$

Statistics for one sample proportion:
$$p = \frac{r}{n}$$
 $q = 1$ p

$$E = z_c \frac{r}{\frac{pq}{n}}$$
 $z = \frac{p}{p} \frac{pq}{n}$

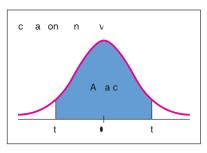
Statistics for two sample means, dependent samples (or paired di erences):

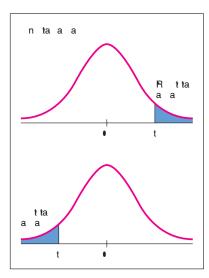

$$d = \frac{P}{n}; \text{ where } d = x_1 \quad x_2 \qquad \qquad s_d = \frac{S}{n} \frac{P}{d^2 \quad \frac{(P-d)^2}{n}}$$

$$E = t \frac{S_d}{n} \qquad \qquad t = \frac{d}{S_d = n}$$

Statistics for two sample means, independent samples:

$$E = z \frac{\frac{2}{1}}{n_1} + \frac{\frac{2}{2}}{n_2} \qquad z = \frac{(x_1 \quad x_2) \quad (1 \quad 2)}{\frac{\frac{2}{1}}{\frac{1}{1}} + \frac{\frac{2}{2}}{\frac{2}{1}}}$$


$$E = t \frac{s}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}} \qquad t = \frac{(x_1 \quad x_2) \quad (1 \quad 2)}{\frac{s_1^2}{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$$



A24 Appendix II Tables

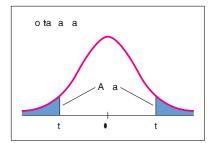


TABLE 6 Critical Values for Student's t Distribution

TABLE 6 Critical Values for Student's t Distribution											
one-tail area	0.250	0.125	0.100	0.075	0.050	0.025	0.010	0.005	0.0005		
two-tail area	0.500	0.250	0.200	0.150	0.100	0.050	0.020	0.010	0.0010		
d.f. c	0.500	0.750	0. 00	0. 50	0.,00	0.,50	0., 0	0.,,0	0.,,,		
1	1.000	2.414	3.07	4.165	6.314	12.706	31. 21	63.657	636.61,		
2	0. 16	1.604	1. 6	2.2 2	2.,20	4.303	6.,65	,.,25	31.5,,		
3	0.765	1.423	1.63	1.,24	2.353	3.1 2	4.541	5. 41	12.,24		
4	0.741	1.344	1.533	1.77	2.132	2.776	3.747	4.604	.610		
5	0.727	1.301	1.476	1.6,,	2.015	2.571	3.365	4.032	6. 6,		
6	0.71	1.273	1.440	1.650	1.,43	2.447	3.143	3.707	5.,5,		
7	0.711	1.254	1.415	1.617	1. ,5	2.365	2.++	3.4,,	5.40		
	0.706	1.240	1.3,7	1.5,2	1. 60	2.306	2. ,6	3.355	5.041		
*	0.703	1.230	1.3 3	1.574	1. 33	2.262	2. 21	3.250	4.7 1		
10	0.700	1.221	1.372	1.55,	1. 12	2.22	2.764	3.16,	4.5 7		
11	0.6,7	1.214	1.363	1.54	1.7,6	2.201	2.71	3.106	4.437		
12	0.6,5	1.20	1.356	1.53	1.7 2	2.17,	2.6 1	3.055	4.31		
13	0.6,4	1.204	1.350	1.530	1.771	2.160	2.650	3.012	4.221		
14	0.6.2	1.200	1.345	1.523	1.761 1.753	2.145	2.624	2.,77	4.140		
15 16	0.6,0	1.1 ₊ 7	1.341 1.337	1.517 1.512	1.746	2.131	2.602	2. ₄ 47 2. ₄ 21	4.073 4.015		
17	0.6	1.1,4	1.333	1.50	1.740	2.110	2.567	2. ,	3.,65		
1	0.6	1.1 ,	1.330	1.504	1.734	2.101	2.552	2. 7	3.,22		
1,	0.6	1.1 7	1.32	1.500	1.72,	2.0,3	2.53,	2. 61	3. 3		
20	0.6 7	1.1 5	1.325	1.4,7	1.725	2.0 6	2.52	2. 45	3. 50		
21	0.6 6	1.1 3	1.323	1.4,4	1.721	2.0 0	2.51	2. 31	3. 1,		
22	0.6 6	1.1 2	1.321	1.4,2	1.717	2.074	2.50	2. 1,	3.7,2		
23	0.6 5	1.1 0	1.31,	1.4 ,	1.714	2.06,	2.500	2. 07	3.76		
24	0.6 5	1.17,	1.31	1.4 7	1.711	2.064	2.4,2	2.7,7	3.745		
25	0.6 4	1.1,	1.316	1.4 5	1.70	2.060	2.4 5	2.7 7	3.725		
26	0.6 4	1.177	1.315	1.4 3	1.706	2.056	2.47,	2.77,	3.707		
27	0.6 4	1.176	1.314	1.4 2	1.703	2.052	2.473	2.771	3.6,0		
2	0.6 3	1.175	1.313	1.4 0	1.701	2.04	2.467	2.763	3.674		
2,	0.6 3	1.174	1.311	1.47,	1.6,,	2.045	2.462	2.756	3.65,		
30	0.6 3	1.173	1.310	1.477	1.6,7	2.042	2.457	2.750	3.646		
35 40	0.6 2	1.170	1.306	1.472	1.6,0	2.030	2.43	2.724	3.5,1		
45	0.6 1	1.167	1.303	1.46	1.6 4	2.021	2.423	2.704	3.551		
45 50	0.6 0 0.67,	1.165 1.164	1.301	1.465 1.462	1.67 ₄	2.014 2.00,	2.412	2.6 ₇ 0	3.520 3.4 ₂ 6		
60	0.67	1.162	1.2,7	1.462	1.671	2.007	2.403	2.660	3.460		
70	0.67	1.160	1.2,4	1.456	1.667	1.,,4	2.3 1	2.64	3.435		
0	0.67	1.15,	1.2,2	1.453	1.664	1.,,0	2.374	2.63,	3.416		
100	0.677	1.157	1.2,0	1.451	1.660	1., 4	2.364	2.626	3.3,0		
500	0.675	1.152	1.2 3	1.442	1.64	1.,65	2.334	2.5 6	3.310		
1000	0.675	1.151	1.2 2	1.441	1.646	1.,62	2.330	2.5 1	3.300		
	0.674	1.150	1.2 2	1.440	1.645	1.,60	2.326	2.576	3.2,1		

For degrees of freedom d.f. not in the table, use the closest d.f. that is smaller.